
The effect of annealing on the time-dependent behavior of isotactic

polypropylene at finite strains

Aleksey D. Drozdov*, Jesper deClaville Christiansen

Department of Production, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg, Denmark

Received 11 February 2002; received in revised form 10 May 2002; accepted 10 May 2002

Abstract

Four series of tensile relaxation tests are performed on isotactic polypropylene at elongations up to the necking point. In the first series of

experiments, injection-molded samples are used without thermal pre-treatment. In the other series, the specimens are annealed for 24 h prior

to testing at 110, 120 and 130 8C, respectively. Results of mechanical experiments are compared with DSC measurements.

A constitutive model is derived for the time-dependent response of semicrystalline polymers at finite strains. A polymer is treated as an

equivalent temporary network of macromolecules bridged by junctions (physical cross-links, entanglements and crystalline lamellae). At

random times chains separate from their junctions and merge with new ones (the viscoelastic response), whereas junctions slip with respect to

their positions in the bulk material (the viscoplastic behavior). The network is thought of as an ensemble of active meso-regions with various

potential energies for detachment of chains from temporary nodes and passive meso-domains, where separation of chains is prevented by

surrounding radial and tangential lamellae.

Experimental data demonstrate that the content of active meso-domains increases with elongation ratio driven by the release of constrained

amorphous phase induced by fragmentation of lamellae. In the sub-critical region of deformation (relatively small strains), the growth of the

concentration of active meso-regions is associated with breakage of subsidiary (thin) lamellae developed at annealing. In the post-critical

region (large strains), an increase in the fraction of active amorphous domains is attributed to disintegration of primary (thick)

lamellae. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper is concerned with the effect of annealing on

the viscoelastic behavior of isotactic polypropylene (iPP) at

finite strains (up to the necking point). Isotactic polypropy-

lene is chosen for the analysis because of numerous

applications of this polymer in industry (oriented films for

packaging, reinforcing fibers, non-woven fabrics, blends

with thermoplastic elastomers, etc.).

The effect of annealing at elevated temperatures on the

morphology of semicrystalline polymers has been a focus of

attention during the past five years, see Refs. [1–11], to

mention a few. The previous works concentrated on

calorimetric and morphological analysis of transformations

in the microstructure of crystallites. The influence of these

transformations on the mechanical response of solid

polymers was not studied in detail. The goal of this paper

is to reveal some correlations between changes in the

structure of crystalline lamellae at annealing (observed in

DSC tests as the development of a low-temperature shoulder

on melting curves) and alternation of relaxation curves

measured in the sub-yield and post-yield regions of

deformation.

The non-linear viscoelastic response of polypropylene

was analyzed by Ward and Wolfe [12], see also Ward and

Hadley [13], and Smart and Williams [14] three decades

ago, and, more recently, by Wortmann and Schulz [15,16],

Ariyama [17], Ariyama et al. [18], Dutta and Edward [19],

Read and Tomlins [20], and Tomlins and Read [21].

Dynamic mechanical analysis shows two pronounced

maxima on the plot of the loss tangent of iPP versus

temperature [22,23]. The first maximum (b-transition in the

interval between T ¼ 220 and 10 8C) is associated with the

glass transition in the most mobile part of the amorphous

phase, whereas the other maximum (a-transition in the

interval between T ¼ 70 and 110 8C) is attributed to the

glass transition in the remaining part of the amorphous
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phase (the so-called ‘rigid amorphous fraction’ [1]). This

conclusion is confirmed by DSC traces for quenched PP that

reveal an endoterm at T ¼ 70 8C which may be ascribed to

thermal activation of amorphous regions with restricted

mobility at heating [23].

Isotactic polypropylene exhibits three different crystal-

lographic forms: monoclinic a crystallites, (pseudo) hex-

agonal b structures, orthorhombic g polymorphs, and

‘smectic’ mesophase [3]. At rapid cooling of the melt

(which is typical of injection molding), a crystallites and

smectic mesophase are mainly developed, whereas b and g

polymorphs arise as minority components [24]. A unique

feature of a structures in iPP is the lamellar cross-hatching:

development of transverse lamellae in spherulites that are

oriented in the direction perpendicular to the direction of

radial lamellae [7,8]. The characteristic size of a spherulites

in injection-molded specimens is estimated as 100–200 mm

[24,25]. These spherulites consist of crystalline lamellae

with thickness of 10–20 nm [25]. The amorphous phase is

located (i) between spherulites, (ii) inside spherulites

between lamellar stacks (‘liquid pockets’ [1]), and (iii)

between lamellae in lamellar stacks. It consists of (i)

relatively mobile chains between spherulites, in liquid

pockets and between radial lamellae inside lamellar stacks,

and (ii) severely restricted chains in the regions bounded by

radial and tangential lamellae.

Annealing of iPP at an elevated temperature results in (i)

secondary crystallization of a part of the amorphous phase,

(ii) thickening of radial lamellae, (iii) development of

subsidiary lamellae, and (iv) growth of the crystal perfection

[8]. Other morphological changes in iPP driven by thermal

treatment are the subject of debate. Some researchers [11,

25,26] conclude that the fraction of b spherulites increases

at annealing in the interval of temperatures between 110 and

130 8C, which enhances ductility of iPP and improves its

impact properties. According to other authors [7,23],

annealing of iPP induces transformation of smectic

mesophase into a polymorph without noticeable develop-

ment of b structures.

Mechanical loading results in inter-lamellar separation,

rotation and twist of lamellae, fine and coarse slip of

lamellar blocks and their fragmentation [23,27]. Stretching

of iPP specimens causes chain slip through the crystals,

sliding and breakage of tie chains [28,29], and activation of

constrained amorphous regions driven by lamellar dis-

integration. In the post-yield region, these alternations of the

microstructure result in cavitation, formation of fibrills and

stress-induced crystallization [30].

Morphological transformations in iPP driven by thermo-

mechanical factors cannot be adequately described by a

constitutive model with a small number of adjustable

parameters. To develop stress–strain relations, a method of

‘homogenization of microstructure’ [31] is applied. Accord-

ing to this approach, an equivalent phase is introduced

whose deformation captures essential features of the

response of a semicrystalline polymer with a complicated

microstructure. An amorphous phase is chosen as the

equivalent phase for the following reasons:

1. The viscoelastic response of semicrystalline polymers is

conventionally associated with rearrangement of chains

in amorphous regions [25].

2. Sliding of tie chains along and their detachment from

lamellae play the key role in the time-dependent response

of semicrystalline polymers [28,29].

3. The viscoplastic flow in semicrystalline polymers is

assumed to be ‘initiated in the amorphous phase before

transitioning into the crystalline phase’ [32].

4. Conventional models for polyethylene [31], polypropyl-

ene [33,34] and poly(ethylene terephthalate) [35] treat

these polymers as networks of macromolecules.

Above the glass transition temperature for the mobile

amorphous phase, iPP is thought of as a network of

macromolecules bridged by junctions. Deformation of a

specimen induces slip of junctions with respect to their

positions in the bulk material. Sliding of junctions reflects

slippage of tie molecules along lamellae and fine slip of

lamellar blocks.

With reference to the concept of transient networks

[36–38], the viscoelastic response of iPP is modeled as

separation of active chains from their junctions and

attachment of dangling chains to temporary nodes. Detach-

ment of chains from junctions is treated as a thermally

activated process whose rate is governed by the Eyring

equation [39].

A network of macromolecules is thought of as an

ensemble of meso-regions (MR) with various activation

energies for separation of active strands. The heterogeneity

of the network is attributed to (i) the influence of crystallites

on rearrangement of surrounding chains and (ii) the local

inhomogeneity of amorphous phase induced by density

fluctuations. Two types of MRs are distinguished: (i) active

domains, where strands separate from junctions as they are

thermally agitated (mobile part of the amorphous phase),

and (ii) passive domains, where detachment of chains from

junctions is prevented by surrounding lamellae (rigid

amorphous fraction). Stretching of a specimen results in

the growth of the content of active MRs driven by release of

the amorphous phase in passive meso-domains due to

fragmentation of lamellae.

The objective of this study is three-fold:

1. To report experimental data in DSC tests and in tensile

relaxation tests on specimens not subjected to thermal

treatment and on samples annealed at various tempera-

tures, T, in the interval between 110 and 130 8C.

2. To derive constitutive equations for the viscoelastic

response of semicrystalline polymers at finite strains.

3. To assess the effect of annealing on the time-dependent

behavior of iPP and to reveal some correlations between

observations in calorimetric and mechanical tests.
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The exposition is organized as follows. Section 2 deals

with the kinetics of rearrangement of strands in active meso-

domains. Kinematic equations for sliding of temporary

junctions are developed in Section 3. Stress–strain relations

are derived in Section 4 by using the laws of thermo-

dynamics. The constitutive equations are simplified for

uniaxial tension of a bar in Section 5. The specimens and the

experimental procedure are described in Section 6.

Adjustable parameters in the constitutive equations are

found in Section 7 by fitting observations. A brief discussion

of our findings is presented in Section 8. Some concluding

remarks are formulated in Section 9.

2. Rearrangement of active strands

A semicrystalline polymer is treated as a temporary

network of chains bridged by junctions. The network is

modeled as an ensemble of meso-regions with various

potential energies for detachment of strands from their

junctions. Two types of meso-domains are distinguished:

passive and active. In passive MRs, all nodes are thought of

as permanent. In active MRs, active strands (whose ends are

connected to contiguous nodes) separate from the temporary

junctions at random times when they are thermally agitated.

An active chain whose end detaches from a junction is

transformed into a dangling chain. A dangling chain returns

into the active state when its free end captures a nearby

junction at a random instant.

Denote by Xa the number of strands merged with the

network in active MRs, and by Xp the number of strands

connected to the network in passive MRs. At stretching,

some crystalline lamellae (restricting mobility of chains in

passive MRs) break, which results in a growth of the number

of strands to be rearranged. As a consequence, the number

of strands in active MRs increases and the number of strands

in passive meso-domains decreases. Under a time-depen-

dent loading program, the quantities Xa and Xp are functions

of time t that obey the conservation law

XaðtÞ þ XpðtÞ ¼ X; ð1Þ

where X is the average number of active strands per unit

mass of a polymer (this quantity is assumed to be time-

independent).

Rearrangement of strands in active MRs is thought of as

a thermally activated process. The rate of detachment of

active strands from their junctions in a MR with potential

energy �v is given by the Eyring equation [39]

G ¼ Ga exp 2
�v

kBT

� �
;

where kB is Boltzmann’s constant, T is the absolute

temperature, and the pre-factor Ga is independent of energy

�v and temperature T. Introducing the dimensionless

activation energy v ¼ �v=ðkBT0Þ; where T0 is a reference

temperature, we arrive at the formula

G ¼ Ga expð2vÞ: ð2Þ

The distribution of active MRs with various potential

energies is described by the probability density pðvÞ that

equals the ratio of the number, Naðt;vÞ; of active meso-

domains with energy v at instant t to the total number of

active MRs

Naðt;vÞ ¼ XaðtÞpðvÞ: ð3Þ

We suppose that the distribution function, pðvÞ; for

potential energies of active MRs is not affected by

mechanical factors.

An ensemble of active meso-domains is described by the

function naðt; t;vÞ that equals the number of active strands

at time t (per unit mass) belonging to active MRs with

potential energy v that have last been rearranged before

instant t [ ½0; t�: In particular, nað0; 0;vÞ is the number (per

unit mass) of active strands in active MRs with potential

energy v in a stress-free medium

nað0; 0;vÞ ¼ Nað0;vÞ; ð4Þ

and naðt; t;vÞ is the number (per unit mass) of active strands

in active MRs with potential energy v in the deformed state

at time t (the initial time t ¼ 0 corresponds to the instant

when external loads are applied)

naðt; t;vÞ ¼ Naðt;vÞ: ð5Þ

The amount

›na

›t
ðt; t;vÞ

����
t¼t

dt

equals the number (per unit mass) of dangling strands in

active MRs with potential energy v that merge with the

network within the interval ½t; tþ dt�; and the quantity

›na

›t
ðt; t;vÞ dt

is the number of these strands that have not detached from

temporary junctions during the interval ½t; t�: The number

(per unit mass) of strands in active MRs that separate (for

the first time) from the network within the interval ½t; t þ dt�

reads

2
›na

›t
ðt; 0;vÞ dt:

The number (per unit mass) of strands in active MRs that

merged with the network during the interval ½t; tþ dt� and,

afterwards, separated from the network within the interval

½t; t þ dt� is given by

2
›2na

›t›t
ðt; t;vÞ dt dt:

The rate of detachment, G, equals the ratio of the number of

active strands that separate from the network per unit time to

the current number of active strands. Applying this

definition to active strands that merged with the network
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during the interval ½t; tþ dt� and separated from temporary

junctions within the interval ½t; t þ dt�; we find that

›2na

›t›t
ðt; t;vÞ ¼ 2GðvÞ

›na

›t
ðt; t;vÞ: ð6Þ

Changes in the function naðt; 0;vÞ are governed by two

processes:

1. Detachment of active strands from temporary nodes.

2. Mechanically induced activation of passive MRs.

The kinetic equation for this function reads

›na

›t
ðt; 0;vÞ ¼ 2GðvÞnaðt; 0;vÞ þ

›Na

›t
ðt;vÞ: ð7Þ

The solution of Eq. (7) with initial condition (4) is given by

naðt; 0;vÞ ¼ Nað0;vÞ exp½2GðvÞt�

þ
ðt

0

›Na

›t
ðt;vÞ exp½2GðvÞðt 2 tÞ� dt: ð8Þ

Eq. (6) implies that

›na

›t
ðt; t;vÞ ¼ wðt;vÞ exp½2GðvÞðt 2 tÞ�; ð9Þ

where

wðt;vÞ ¼
›na

›t
ðt; t;vÞ

����
t¼t

:

It follows from Eq. (5) that

naðt; 0;vÞ þ
ðt

0

›na

›t
ðt; t;vÞ dt ¼ Naðt;vÞ: ð10Þ

Differentiation of Eq. (10) with respect to time yields

wðt;vÞ þ
›na

›t
ðt; 0;vÞ þ

ðt

0

›2na

›t›t
ðt; t;vÞ dt ¼

›Na

›t
ðt;vÞ:

This equality together with Eqs. (6), (7) and (10) results in

wðt;vÞ ¼ GðvÞNaðt;vÞ:

Combining this expression with Eq. (9), we find that

›na

›t
ðt; t;vÞ ¼ GðvÞNaðt;vÞ exp½2GðvÞðt 2 tÞ�: ð11Þ

Rearrangement of active strands in active MRs is described

by Eqs. (2), (3), (8) and (11). These relations are determined

by (i) the distribution function pðvÞ for active MRs with

various potential energies v; and (ii) the concentration of

active MRs

kaðtÞ ¼
XaðtÞ

X
: ð12Þ

Separation of active strands from their junctions and

detachment of dangling chains to the network reflect the

viscoelastic response of a semicrystalline polymer. The

viscoplastic behavior is associated with mechanically

induced sliding of junctions with respect to their reference

positions in the bulk material.

3. Sliding of junctions

Denote by r0 the radius vector of an arbitrary point in the

reference state and by rðtÞ its radius vector in the deformed

state at time t $ 0: Transition from the reference state to the

actual state is determined by the deformation gradient

F0ðtÞ ¼
›rðtÞ

›r0

: ð13Þ

Sliding of junctions with respect to their reference positions

is modeled as a transformation of the reference state, when a

point with the initial radius vector r0 moves to the point with

a radius vector rsðtÞ: This transition is described by the

deformation gradient

FsðtÞ ¼
›rsðtÞ

›r0

:

Transformation of the new reference state into the deformed

state is characterized by the deformation gradient

FeðtÞ ¼
›rðtÞ

›rsðtÞ
:

The subscript indices ‘s’ and ‘e’ indicate that the

corresponding deformation gradients describe sliding of

junctions and elastic deformation (in the sense that the strain

energy of a strand is a function of Fe), respectively.

To simplify the analysis, we suppose that the network is

incompressible. This hypothesis is based on the assumptions

that (i) the excluded-volume effect and other multi-chain

effects are screened for an individual strand by surrounding

macromolecules, and (ii) the energy of interaction between

strands is accounted for with the help of the incompressi-

bility condition [38].

According to the chain rule for differentiation, the tensors

F0ðtÞ; FsðtÞ and FeðtÞ are connected by the conventional

relationship

F0ðtÞ ¼ FeðtÞ·FsðtÞ; ð14Þ

where the dot denotes inner product.

Differentiation of Eq. (13) with respect to time implies

that

dF0

dt
ðtÞ ¼

›vðtÞ

›r0

¼
›vðtÞ

›rðtÞ
·
›rðtÞ

›r0

;

where vðtÞ is the velocity vector. Introducing the velocity

gradient

LðtÞ ¼
›vðtÞ

›rðtÞ
;
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and using Eq. (13), we find that

dF0

dt
ðtÞ ¼ LðtÞ·F0ðtÞ: ð15Þ

Bearing in mind that

d

dt
½F0ðtÞ�21 ¼ 2½F0ðtÞ�21·

dF0

dt
ðtÞ·½F0ðtÞ�21;

we obtain

d

dt
½F0ðtÞ�21 ¼ 2½F0ðtÞ�21·LðtÞ: ð16Þ

By analogy with Eqs. (15) and (16), we write

dFs

dt
ðtÞ ¼ LsðtÞ·FsðtÞ;

dF21
s

dt
ðtÞ ¼ 2F21

s ðtÞ·LsðtÞ; ð17Þ

where LsðtÞ is the velocity gradient for sliding of junctions.

It follows from Eq. (14) that

dFe

dt
ðtÞ ¼

d

dt

h
F0ðtÞ·F21

s ðtÞ
i

¼
dF0

dt
ðtÞ·F21

s ðtÞ þ F0ðtÞ·
dF21

s

dt
ðtÞ:

Substitution of Eqs. (15) and (17) into this equality results in

dFe

dt
ðtÞ ¼ LðtÞ·FeðtÞ2 FeðtÞ·LsðtÞ: ð18Þ

The right and left Cauchy–Green tensors for elastic

deformation are given by

C0
eðtÞ ¼ FT

e ðtÞ·FeðtÞ; B0
eðtÞ ¼ FeðtÞ·F

T
e ðtÞ; ð19Þ

where T stands for transpose. We differentiate the first

equality in Eq. (19) with respect to time, use Eq. (18), and

find that

dC0
e

dt
ðtÞ ¼ 2FT

e ðtÞ·DðtÞ·FeðtÞ2 LT
s ðtÞ·C

0
eðtÞ2 C0

eðtÞ·LsðtÞ;

ð20Þ

where

DðtÞ ¼
1

2
½LðtÞ þ LTðtÞ�

is the rate-of-strain tensor. Taking into account that

d

dt
C0

eðtÞ
h i21

¼ 2 C0
eðtÞ

h i21
·
dC0

e

dt
ðtÞ· C0

eðtÞ
h i21

;

and using Eq. (20), we arrive at the formula

d

dt

"
C0

eðtÞ

#21

¼ 22

"
FT

e ðtÞ

#21

·DðtÞ·

"
FT

e ðtÞ

#21

þ

"
C0

eðtÞ

#
21

·LT
s ðtÞ þ LsðtÞ·

"
C0

eðtÞ

#
21

: ð21Þ

The first principal invariant of the right Cauchy–Green

tensor C0
eðtÞ reads

I0
1ðtÞ ¼ C0

eðtÞ : I;

where I is the unit tensor and the colon stands for

convolution. It follows from this equality and Eq. (20) that

dI0
1

dt
ðtÞ ¼ 2 FeðtÞ·F

T
e ðtÞ

h i
: DðtÞ2 2C0

eðtÞ : DsðtÞ; ð22Þ

where

DsðtÞ ¼
1

2
LsðtÞ þ LT

s ðtÞ
h i

is the rate-of-strain tensor for sliding of junctions. Eqs. (19)

and (22) imply that

dI0
1

dt
ðtÞ ¼ 2 B0

eðtÞ : DðtÞ2 C0
eðtÞ : DsðtÞ

h i
: ð23Þ

For an incompressible medium, the second principal

invariant of the right Cauchy–Green tensor C0
eðtÞ is given

by

I0
2ðtÞ ¼ C0

eðtÞ
h i21

: I:

Combining this equality with Eqs. (19) and (21), we find

that

dI0
2

dt
ðtÞ ¼ 22 B0

eðtÞ
h i21

: DðtÞ2 C0
eðtÞ

h i21
: DsðtÞ

	 

: ð24Þ

It follows from Eqs. (23) and (24) that the derivative of an

arbitrary smooth function f of the first two principal

invariants of the right Cauchy–Green tensor C0
eðtÞ is

determined by the formula

df

dt

�
I0
1ðtÞ; I0

2 ðtÞ
�
¼ 2

nh
f0
;1ðtÞB

0
eðtÞ2 f0

;2ðtÞ
�
B0

eðtÞ
�21i

: DðtÞ

2
h
f0
;1ðtÞC

0
eðtÞ2 f0

;2ðtÞ
�
C0

eðtÞ
�21i

: DsðtÞ
o
; ð25Þ

where

f0
;kðtÞ ¼

›f

›I0
k

I0
1 ðtÞ; I0

2ðtÞ
� �

k ¼ 1; 2:

Eq. (20) describes evolution of the right Cauchy–Green

tensor C0
eðtÞ for strands that were bridged to their junctions

in the stress-free state and have not detached from these

junctions within the interval ½0; t�: For a strand that merged

with the network at some instant t [ ½0; t� and has remained

linked to the network during the interval ½t; t�; transform-

ation of the deformed state at time t into the deformed state

at time t is characterized by the deformation gradient

Fðt; tÞ ¼ F0ðtÞ·½F0ðtÞ�21:

Transformation of the reference state into the deformed

state is described by the deformation gradient

Fsðt; tÞ ¼ FsðtÞ·F
21
s ðtÞ:
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The elastic deformation gradient Feðt; tÞ is expressed in

terms of the deformation gradients Fðt; tÞ and Fsðt; tÞ by

means of Eq. (14), which implies that

Feðt; tÞ ¼ F0ðtÞ· F0ðtÞ
h i

21
·FsðtÞ·F

21
s ðtÞ: ð26Þ

The right and left Cauchy–Green tensors, Ceðt; tÞ and

Beðt; tÞ; are given by Eq. (19). Combining these equalities

with Eq. (26), we obtain

Ceðt; tÞ

¼ F2T
s ðtÞ·FT

s ðtÞ·
h
F0ðtÞ

i2T
·C0ðtÞ·

h
F0ðtÞ

i21
·FsðtÞ·F

21
s ðtÞ;

ð27Þ

Beðt; tÞ

¼ F0ðtÞ·
h
F0ðtÞ

i21
·FsðtÞ·C

21
s ðtÞ·FT

s ðtÞ·
h
F0ðtÞ

i2T
·½F0ðtÞ�T;

where

C0ðtÞ ¼ F0ðtÞ
h iT

·F0ðtÞ; CsðtÞ ¼ FT
s ðtÞ·FsðtÞ: ð28Þ

It follows from Eqs. (15) and (28) that

dC0

dt
ðtÞ ¼ 2 F0ðtÞ

h iT
·DðtÞ·F0ðtÞ: ð29Þ

Differentiating the first equality in Eq. (27) with respect to t

and using Eqs. (17) and (29), we find that

›Ce

›t
ðt; tÞ ¼ 2LT

s ðtÞ·Ceðt; tÞ2 Ceðt; tÞ·LsðtÞ

þ 2F2T
s ðtÞ·FT

s ðtÞ· F0ðtÞ
h i

2T
·

� F0ðtÞ
h iT

·DðtÞ·F0ðtÞ· F0ðtÞ
h i21

·FsðtÞ·F
21
s ðtÞ: ð30Þ

Eqs. (27) and (30) together with the formula

›C21
e

›t
ðt; tÞ ¼ 2C21

e ðt; tÞ·
›Ce

›t
ðt; tÞ·C21

e ðt; tÞ

imply that

›C21
e

›t
ðt; tÞ ¼ C21

e ðt; tÞ·LT
s ðtÞ þ LsðtÞ·Ceðt; tÞ

22FsðtÞ·F
21
s ðtÞ·F0ðtÞ·

h
F0ðtÞ

i21
·DðtÞ·

h
F0ðtÞ

i2T
·
h
F0ðtÞ

iT
·F2T

s ðtÞ·FT
s ðtÞ:

ð31Þ

The first principal invariant of the Cauchy–Green tensor

Ceðt; tÞ reads

I1ðt; tÞ ¼ Ceðt; tÞ : I:

Differentiating this equality with respect to t and using Eqs.

(27) and (30), we arrive at the formula

›I1

›t
ðt; tÞ ¼ 2 Beðt; tÞ : DðtÞ2 Ceðt; tÞ : DsðtÞ

� �
: ð32Þ

The second principal invariant of the Cauchy–Green tensor

Ceðt; tÞ is given by

I2ðt; tÞ ¼ C21
e ðt; tÞ : I:

It follows from this equality and Eqs. (27) and (31) that

›I2

›t
ðt; tÞ ¼ 22 B21

e ðt; tÞ : DðtÞ2 C21
e ðt; tÞ : DsðtÞ

h i
: ð33Þ

According to Eqs. (32) and (33), for an arbitrary smooth

function f of the first two principal invariants of the right

Cauchy–Green tensor Ceðt; tÞ

›f

›t
ðI1ðt; tÞ; I2ðt; tÞÞ

¼ 2
nh
f;1ðt; tÞBeðt; tÞ2 f;2ðt; tÞB

21
e ðt; tÞ

i
: DðtÞ

2
h
f;1ðt; tÞCeðt; tÞ2 f;2ðt; tÞC

21
e ðt; tÞ

i
: DsðtÞ

o
ð34Þ

with

f;kðt; tÞ ¼
›f

›Ik

ðI1ðt; tÞ; I2ðt; tÞÞ k ¼ 1; 2:

Formulas (25) and (34) are employed to develop stress–

strain relations for a semicrystalline polymer.

4. Constitutive equations

This study is confined to active loading processes, when

stretching a specimen results in mechanically induced

activation of passive meso-regions. The strain energy of

an active strand bridged to the network in a stress-free state,

�w; depends on the first two principal invariants I0
k ðtÞ ðk ¼

1; 2Þ of the right Cauchy–Green tensor, C0
eðtÞ; for transition

from the reference state to the deformed state at time t

�wðt; 0Þ ¼ wðI0
1 ðtÞ; I0

2ðtÞÞ:

The strain energy, �wðt; tÞ; of an active strand that has last

been reformed at time t [ ½0; t� is a function of the first two

principal invariants, Ikðt; tÞ; of the right Cauchy–Green

tensor Ceðt; tÞ

�wðt; tÞ ¼ wðI1ðt; tÞ; I2ðt; tÞÞ:

The same function, w, is employed to describe strain

energies of strands in various meso-domains. This function

is assumed to vanish in the reference state

wðI1; I2ÞlI1¼3;I2¼3 ¼ 0: ð35Þ

We do not dwell on an explicit expression for the function

w. A survey of strain energy densities of rubber-like

materials can be found in Ref. [40].

Summing the strain energies of active strands in passive

meso-domains and those of active strands in active meso-

regions (that merged with the network at various times

t [ ½0; t�) and neglecting the energy of interaction between
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strands (which is taken into account by means of the

incompressibility condition), we arrive at the mechanical

energy per unit mass of a polymer

WðtÞ ¼

"
XpðtÞ þ

ð1

0
nðt; 0;vÞ dv

#
w
�
I0
1 ðtÞ; I0

2ðtÞ
�

þ
ðt

0

"ð1

0

›n

›t
ðt; t;vÞ dv

#
wðI1ðt; tÞ; I2ðt; tÞÞ dt:

Differentiating this equality with respect to time and using

Eqs. (25), (34) and (35), we obtain

dW

dt
ðtÞ ¼ 2AðtÞ : DðtÞ2 2AsðtÞ : DsðtÞ2 YðtÞ; ð36Þ

where

AðtÞ ¼

"
XpðtÞ þ

ð1

0
nðt; 0;vÞ dv

#"
w0
;1ðtÞB

0
eðtÞ

2 w0
;2ðtÞ

 
B0

eðtÞ

!
21#

þ
ðt

0

"ð1

0

›n

›t
ðt; t;vÞ dv

#

�

"
w;1ðt; tÞBeðt; tÞ2 w;2ðt; tÞB

21
e ðt; tÞ

#
dt;

ð37Þ

AsðtÞ ¼

"
XpðtÞ þ

ð1

0
nðt; 0;vÞ dv

#"
w0
;1ðtÞC

0
eðtÞ

2 w0
;2ðtÞ

 
C0

eðtÞ

!21#
þ
ðt

0

"ð1

0

›n

›t
ðt; t;vÞ dv

#

�

"
w;1ðt; tÞCeðt; tÞ2 w;2ðt; tÞC

21
e ðt; tÞ

#
dt;

YðtÞ ¼ 2

"
dXp

dt
ðtÞ þ

ð1

0

›n

›t
ðt; 0;vÞ dv

#
w
�
I0
1ðtÞ; I0

2 ðtÞ
�

2
ðt

0

"ð1

0

›2n

›t›t
ðt; t;vÞ dv

#
wðI1ðt; tÞ; I2ðt; tÞÞ dt:

Taking into account that the first invariant of the tensor Ds

vanishes for isochoric deformations, we present Eq. (36) as

follows

dW

dt
ðtÞ ¼ 2AðtÞ : DðtÞ2 2A0

sðtÞ : DsðtÞ2 YðtÞ; ð38Þ

where the prime stands for the deviatoric component of a

tensor.

For isothermal deformation of an incompressible med-

ium, the Clausius–Duhem inequality reads

Q ¼ 2
dW

dt
þ

1

r
S0 : D $ 0;

where r is mass density, S is the Cauchy stress tensor, and Q

is the internal dissipation per unit mass. Substitution of Eq.

(38) into this equality results in

Q ¼
1

r
ðS0 2 2rAÞ : D þ 2A

0

s : Ds þ Y $ 0: ð39Þ

It follows from Eqs. (1), (3), (6), (7) and (37) that

YðtÞ ¼
ð1

0
GðvÞ

"
nðt; 0;vÞw

�
I0
1 ðtÞ; I0

2ðtÞ
�

þ
ðt

0

›n

›t
ðt; t;vÞwðI1ðt; tÞ; I2ðt; tÞÞ dt

#
dv:

Because the functions GðvÞ; wðI1; I2Þ; nðt; 0;vÞ and

›n=›tðt; t;vÞ are non-negative, we find that the function

YðtÞ is non-negative as well. This means that the dissipation

inequality (39) is satisfied for an arbitrary deformation

program, provided that (i) the expression in brackets

vanishes and (ii) the rate-of-strain tensor for sliding of

junctions Ds is proportional to the tensor A0
s: The first

condition results in the constitutive equation

SðtÞ ¼ 2PðtÞI þ 2r

	�
XpðtÞ þ

ð1

0
nðt; 0;vÞ dv

��
w0
;1ðtÞB

0
eðtÞ

2 w0
;2ðtÞ

�
B0

eðtÞ

�21�
þ
ðt

0

�ð1

0

›n

›t
ðt; t;vÞ dv

�

�

�
w;1ðt; tÞBeðt; tÞ2 w;2ðt; tÞB

21
e ðt; tÞ

�
dt



;

ð40Þ

where P is pressure. The other condition leads to the kinetic

equation for sliding of junctions

DeðtÞ ¼ aðtÞ½DðtÞ : DðtÞ�1=2

("
XpðtÞ þ

ð1

0
nðt; 0;vÞ dv

#

£

"
w0
;1ðtÞC

0
eðtÞ2 w0

;2ðtÞ

 
C0

eðtÞ

!21#

þ
ðt

0

"ð1

0

›n

›t
ðt; t;vÞ dv

#

£

"
w;1ðt; tÞCeðt; tÞ2 w;2ðt; tÞC

21
e ðt; tÞ

#
dt

)0

; ð41Þ

where a is a non-negative function of the Cauchy stress

tensor S and the rate-of-strain tensors D and Ds that obeys

conventional axioms in continuum mechanics. The pre-

factor ½DðtÞ : DðtÞ�1=2 in Eq. (41) ensures that the rate of

sliding of junctions with respect to their reference positions

is proportional to the strain rate. This assertion allows the

viscoelastic and viscoplastic deformations to be distin-

guished: the behavior of a semicrystalline polymer in tests

with time-independent deformations (relaxation) is entirely

ascribed to rearrangement of active strands, whereas the
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rate-dependent response at high-speed loadings is attributed

to sliding of junctions.

Eq. (41) differs from conventional relations in finite

elastoplasticity, where the rate of plastic flow is assumed to

be proportional to the deviatoric part of the Cauchy stress

tensor S: Eqs. (40) and (41) demonstrate that for an

arbitrary three-dimensional deformation, the tensor Ds is not

proportional to S0; except for the special cases when the

right and left Cauchy–Green tensors coincide.

Our aim now is to simplify the constitutive Eqs. (40) and

(41) for uniaxial extension of a specimen.

5. Uniaxial tension of a bar

Points of a bar refer to Cartesian coordinates {Xi} ði ¼

1; 2; 3Þ in the stress-free state, to Cartesian coordinates {xi}

in the deformed state, and to Cartesian coordinates {ji} in

the reference state at time t. Uniaxial tension of an

incompressible medium is described by the formulas

x1 ¼ kðtÞX1; x2 ¼ k21=2ðtÞX2; x3 ¼ k21=2ðtÞX3;

ð42Þ

where k ¼ kðtÞ is the extension ratio. It is assumed that

transformation of the reference state is determined by the

equations similar to Eq. (42)

j1 ¼ ksðtÞX1; j2 ¼ k21=2
s ðtÞX2; j3 ¼ k21=2

s ðtÞX3;

where ksðtÞ is a function to be found. Omitting simple

algebra, we find from Eq. (40) and the boundary condition

of the stress-free lateral surface of the bar that the true

longitudinal stress s is given by

sðtÞ ¼ 2r

("
XpðtÞ þ

ð1

0
nðt; 0;vÞ dv

#

£

"
w0
;1ðtÞ þ w0

;2ðtÞ
ksðtÞ

kðtÞ

#" 
kðtÞ

ksðtÞ

!2

2
ksðtÞ

kðtÞ

#

þ
ðt

0

"ð1

0

›n

›t
ðt; t;vÞ dv

#"
w;1ðt; tÞ þ w;2ðt; tÞ

ksðtÞkðtÞ

kðtÞksðtÞ

#

£

" 
kðtÞksðtÞ

ksðtÞkðtÞ

!2

2
ksðtÞkðtÞ

kðtÞksðtÞ

#
dt

)
: ð43Þ

Eq. (41) implies the differential equation for the function ks

dks

dt
ðtÞ ¼ a1ðtÞsðtÞ

ksðtÞ

kðtÞ

dk

dt
ðtÞ

����
����; ksð0Þ ¼ 1; ð44Þ

where a1 ¼ a=ð2rÞ:
To compare results of numerical simulation with the

experimental data, we concentrate on a tensile relaxation

test with

kðtÞ ¼
1; t , 0;

l; t $ 0;

(
ð45Þ

where l . 1 is a constant. It follows from Eqs. (44) and (45)

that ksðtÞ ¼ ls for any t . 0: For the deformation program

(45), the fractions of active, Xa; and passive, Xp; MRs

become functions of the elongation ratio l: The strain

energy density per strand, w, depends on l and ls:
Substitution of expressions (2), (3), (8), (12) and (45) into

Eq. (43) results in the following expression for the

engineering stress se ¼ s=l :

seðt; lÞ

¼ s0ðlÞ

(
1 2 kaðlÞ

ð1

0
½1 2 expð2Ga expð2vÞtÞ�pðvÞ dv

)
;

ð46Þ

where

s0ðlÞ ¼ 2rXls w0
;1ðl; lsÞ þ w0

;2ðl; lsÞ
ls

l

� �
l

ls

2
ls

l

� �2
" #

:

To fit experimental data, we adopt the random energy model

[41] for the distribution of active MRs with various

activation energies

pðvÞ ¼ p0 exp 2
ðv2 �VÞ2

2S2

" #
ðv $ 0Þ;

pðvÞ ¼ 0 ðv , 0Þ;

ð47Þ

where �V and S are adjustable parameters of the quasi-

Gaussian probability density, and the constant p0 is

determined by the condition

ð1

0
pðvÞ dv ¼ 1: ð48Þ

Setting va ¼ ln Ga and introducing the notation z ¼

v2 va; we find from Eqs. (46) and (47) that

seðt; lÞ ¼ s0ðlÞ

(
1 2 p0kaðlÞ

ð1

2va

� ½1 2 expð2expð2zÞtÞ� exp

"
2

ðz 2VÞ2

2S2

#
dz

)
;

where V ¼ �V2 va: Assuming the quasi-Gaussian distri-

bution to be rather narrow (this condition will be verified by

matching experimental data), we replace the lower limit of
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integration by zero and arrive at the formula

seðt; lÞ ¼ s0ðlÞ

(
1 2 p0kaðlÞ

ð1

0

� ½1 2 expð2expð2zÞtÞ� exp

"
2

ðz 2VÞ2

2S2

#
dz

)
:

ð49Þ

Given an elongation ratio, l; Eq. (49) is determined by

four material constants:

1. The apparent average potential energy for separation of

strands from temporary junctions V:
2. The apparent standard deviation of potential energies for

detachment of strands in active meso-regions S:
3. The concentration of strands in active meso-domains ka:
4. The engineering stress at the beginning of a relaxation

test s0:

The quantities V and S are assumed to be strain-

independent, which implies that an individual relaxation

curve is characterized by two adjustable parameters, ka and

s0: These amounts are found by fitting experimental data in

tensile relaxation tests on iPP at various elongation ratios.

6. Experimental procedure

Isotactic polypropylene (Novolen 1100L) was supplied

by BASF (Targor). ASTM dumbbell specimens were

injection molded with length 148 mm, width 10 mm and

thickness 3.8 mm. Four series of tests were performed. In

the first series, the samples were used as produced without

thermal pre-treatment. In the other series of tests, the

specimens were annealed in an oven at the temperatures

110, 120 and 130 8C for 24 h and slowly cooled by air.

Differential scanning calorimetry measurements were

carried out on STA 449/Netzsch apparatus at the heating

rate 5 K/min. The specimens with mass of about 15 mg were

tested in Al2O2 pans covered by lid in argon atmosphere.

The thermal analyzer was calibrated with seven references

ranging from In to Ni. The specific enthalpy of melting,

DHm; equals 86.9 J/g for non-annealed specimens (the

melting peak Tm ¼ 169 8C) and 90.7, 99.9, 102.1 J/g for

samples annealed at 110, 120 and 130 8C, respectively. The

melting peak and the enthalpy of fusion for specimens

not subjected to annealing are in fair agreement with

observations by Collar et al. [42] (Tm ¼ 165 8C,

DHm ¼ 78:1 J/g).

With reference to Wunderlich [43], we accept the value

209 J/g as the enthalpy of fusion for a fully crystalline

polypropylene. The degree of crystallinity, kc; is estimated

as 41.6% for samples not subjected to thermal treatment and

43.4, 47.8, 48.9% for annealed specimens, which implies

that kc increases rather weakly, but consistently with

annealing temperature T.

The shape of DSC curves is noticeably altered in the

interval of temperatures between 100 and 150 8C. The DSC

traces depicted in Fig. 1 are similar to those previously

measured on iPP [3,4,7,8,11].

Uniaxial tensile relaxation tests were performed at room

temperature on a testing machine Instron-5568 equipped

with electro-mechanical sensors for the control of longi-

tudinal strains in the active zone of samples (the distance

between clips was about 50 mm). The tensile force was

measured by a standard bad cell. The engineering stress se

was determined as the ratio of the axial force to the cross-

sectional area of the specimens in the stress-free state.

Mechanical tests were carried out at least one day

after annealing of specimens to minimize the effect of

physical aging on the time-dependent response. The

specimens were loaded with a cross-head speed of

5 mm/min (that corresponded to the Hencky strain rate

_eH ¼ 1:1 £ 1023 s21). The engineering stress–engineering

strain diagrams ðe ¼ k 2 1Þ are depicted in Fig. 2. These

curves are similar in shape to the tensile stress–strain curves

reported in Refs. [11,30].

The same data are re-plotted in Fig. 3 as the true

longitudinal stress versus the elongation ratio k. This figure

demonstrates that the apparent yield point (defined as the

point where a transient growth of stress is transformed into a

steady plastic flow) is not affected by annealing. The

apparent necking point (determined as the point where the

true stress starts to decrease with strain) is independent of

the annealing temperature, T, but the elongation ratio for

necking, kn; for annealed specimens substantially exceeds

that for samples not subjected to thermal treatment. It is

worth noting that the apparent yield strains in Fig. 3 are

Fig. 1. DSC melting curves for isotactic polypropylene annealed at a

temperature T. Symbols: experimental data. Diamonds: non-annealed

samples; unfilled circles: T ¼ 110 8C; filled circles: T ¼ 120 8C; asterisks:

T ¼ 130 8C:
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noticeably larger than the yield strains determined as points

of maxima on the engineering stress–engineering strain

diagrams depicted in Fig. 2.

The series of relaxation experiments on non-annealed

specimens contained five relaxation tests at the longitudinal

strains e1 ¼ 0:04; e2 ¼ 0:08; e3 ¼ 0:12; e4 ¼ 0:16; and

e5 ¼ 0:20: These strains correspond to the sub-yield and

post-yield regions in Fig. 2.

Each relaxation test was performed on a new sample. No

necking of specimens was observed (except for the test with

e5 ¼ 0:20; where a weak neck was created at loading that

remained stable within the relaxation period). In the mth

relaxation test ðm ¼ 1;…; 5Þ; a specimen was loaded with

the cross-head speed 5 mm/min up to the longitudinal strain

em that was preserved constant during the relaxation time

tr ¼ 20 min.

The engineering stress, se; is plotted versus the

logarithm ðlog ¼ log10Þ of time t (the instant t ¼ 0

corresponds to the beginning of stress relaxation) in

Fig. 4. This figure demonstrates that the slopes of

relaxation curves monotonically increase with strain in the

sub-yield region and slowly decrease with e in the post-

yield domain.

All series of relaxation experiments on annealed

Fig. 2. The engineering stress se (MPa) versus strain e in tensile tests with a

constant cross-head speed. Symbols: experimental data on specimens

annealed at a temperature T. Diamonds: non-annealed samples; unfilled

circles: T ¼ 110 8C; filled circles: T ¼ 120 8C; asterisks: T ¼ 130 8C:

Fig. 3. The true stress s (MPa) versus the elongation ratio k in tensile tests

with a constant cross-head speed. Symbols: experimental data for

specimens annealed at a temperature T. Diamonds: non-annealed samples;

unfilled circles: T ¼ 110 8C; filled circles: T ¼ 120 8C; asterisks: T ¼

130 8C: Vertical lines indicate apparent elongation ratios for yielding, ky;

and necking, kn; of annealed samples.

Fig. 4. The engineering stress se (MPa) versus time t (s) in tensile

relaxation tests on non-annealed specimens. Circles: experimental data.

Solid lines: results of numerical simulation. Curve 1: e ¼ 0:04; curve 2:

e ¼ 0:08; curve 3: e ¼ 0:12; curve 4: e ¼ 0:16; curve 5: e ¼ 0:20:

Fig. 5. The engineering stress se (MPa) versus time t (s) in tensile

relaxation tests on specimens annealed at T ¼ 110 8C. Circles: experimen-

tal data. Solid lines: results of numerical simulation. Curve 1: e ¼ 0:02;

curve 2: e ¼ 0:04; curve 3: e ¼ 0:08; curve 4: e ¼ 0:12; curve 5: e ¼ 0:16:
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specimens contain 10 tests at the longitudinal strains e1 ¼

0:02; e2 ¼ 0:04; e3 ¼ 0:08; e4 ¼ 0:12; e5 ¼ 0:16; e6 ¼

0:18; e7 ¼ 0:20; e8 ¼ 0:24; e9 ¼ 0:28; and e10 ¼ 0:32:
Each test was performed on a new sample. No necking of

specimens was observed even at the highest longitudinal

strain e10: In the mth relaxation test ðm ¼ 1;…; 10Þ; a

specimen was loaded with the cross-head speed 5 mm/min

up to the longitudinal strain em that was preserved constant

during the relaxation time tr ¼ 20 min.

The engineering stress, se; is plotted versus the

logarithm of time t in Figs. 5 and 6 for specimens

annealed at T ¼ 110 8C, in Figs. 7 and 8 for samples

annealed at T ¼ 120 8C, and in Figs. 9 and 10 for

samples annealed at T ¼ 130 8C. The experimental data

show that the elongation ratio, l; strongly affects the shape

of relaxation curves. This is clearly shown in Figs. 5, 7 and

9, where the relaxation curves are depicted for strains in the

sub-yield region.

Following common practice, the experimental data in

Figs. 4–10 are plotted in the time interval between 10

and 103 s. The initial response is excluded from the

consideration, because the relaxation curves in the interval

0 # t , 10 s are noticeably affected by deformations during

the loading period.

Fig. 6. The engineering stress se (MPa) versus time t (s) in tensile

relaxation tests on specimens annealed at T ¼ 110 8C. Circles: experimen-

tal data. Solid lines: results of numerical simulation. Curve 1: e ¼ 0:18;

curve 2: e ¼ 0:20; curve 3: e ¼ 0:24; curve 4: e ¼ 0:28; curve 5: e ¼ 0:32:

Fig. 8. The engineering stress se (MPa) versus time t (s) in tensile

relaxation tests on specimens annealed at T ¼ 120 8C. Circles: experimen-

tal data. Solid lines: results of numerical simulation. Curve 1: e ¼ 0:18;

curve 2: e ¼ 0:20; curve 3: e ¼ 0:24; curve 4: e ¼ 0:28; curve 5: e ¼ 0:32:

Fig. 7. The engineering stress se (MPa) versus time t (s) in tensile

relaxation tests on specimens annealed at T ¼ 120 8C. Circles: experimen-

tal data. Solid lines: results of numerical simulation. Curve 1: e ¼ 0:02;

curve 2: e ¼ 0:04; curve 3: e ¼ 0:08; curve 4: e ¼ 0:12; curve 5: e ¼ 0:16:

Fig. 9. The engineering stress se (MPa) versus time t (s) in tensile

relaxation tests on specimens annealed at T ¼ 130 8C. Circles: experimen-

tal data. Solid lines: results of numerical simulation. Curve 1: e ¼ 0:02;

curve 2: e ¼ 0:04; curve 3: e ¼ 0:08; curve 4: e ¼ 0:12; curve 5: e ¼ 0:16:
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7. Fitting of observations

Our purpose now is to find adjustable parameters in the

constitutive Eq. (49) by matching the observations in

relaxation tests. We do not dwell on the approximation

of the stress–strain curves depicted in Figs. 2 and 3,

because fitting of these curves with the help of Eqs.

(43) and (44) requires the strain energy per strand, w, to

be determined. With reference to Sweeney and Ward

[33,34], we suppose that the mechanical energy, w,

based on the slip-link model of rubber elasticity [44]

may provide an adequate description of observations,

but a detailed analysis of the experimental data will be

reported elsewhere.

We begin with matching the relaxation curve for a

specimen annealed at T ¼ 110 8C and strained up to e2 ¼

0:04: This strain is chosen because it is located substantially

below the yield point, on the one hand, and the testing

device ensures high accuracy of control of the strain level in

the relaxation mode, on the other. Introducing the notation

C0ðlÞ ¼ s0ðlÞ; C1ðlÞ ¼ 2kaðlÞs0ðlÞ; ð50Þ

we present Eq. (49) as follows:

seðt; lÞ ¼ C0ðlÞ þ p0C1ðlÞ
ð1

0

� ½1 2 expð2expð2zÞtÞ� exp 2
ðz 2VÞ2

2S2

" #
dz:

ð51Þ

Eq. (51) is determined by four experimental constants: V; S;
C0 and C1: To find these quantities, we fix the intervals

½0;Vmax� and ½0;Smax�; where the ‘best-fit’ parameters V

and S are assumed to be located, and divide these intervals

into M sub-intervals by the points Vi ¼ iDV and Sj ¼ jDS

ði; j ¼ 1;…;MÞ with DV ¼ Vmax=M; DS ¼ Smax=M: For

any pair, {Vi;Sj}; we evaluate the integral in Eq. (51)

numerically (by Simpson’s method with 200 points and the

step Dz ¼ 0:08). The pre-factor p0 is determined by Eq.

(48). The coefficients C0 ¼ C0ði; jÞ and C1 ¼ C1ði; jÞ are

found by the least-squares method from the condition of

minimum of the function

Cði; jÞ ¼
X
tm

½sexpðtmÞ2 snumðtmÞ�
2;

where the sum is calculated over all experimental points tm;
sexp is the engineering stress measured in the relaxation test,

and snum is given by Eq. (51). The best-fit parameters V and

S minimize the function C on the set {Vi;Sj ði; j ¼

1;…;MÞ}: After determining the best-fit values, Vi and

Sj; we repeat this procedure for the new intervals

½Vi21;Viþ1� and ½Sj21;Sjþ1� to ensure good accuracy of

fitting. The best-fit parameters read V ¼ 5:42 and S ¼ 4:64:
For the quasi-Gaussian distribution function (47), the

quantities V and S do not coincide with the average

potential energy for detachment of active strainds, V0;
and the standard deviation of potential energies for

separation of strands from the network, S0: The latter

quantities read

V0 ¼
ð1

0
vpðvÞ dv; S0 ¼

ð1

0
ðv2V0Þ

2pðvÞ dv

� �1=2

:

Numerical integration implies that V0 ¼ 6:32 and S0 ¼

3:63: The width of the quasi-Gaussian distribution j ¼

S0=V0 equals 0.57, which confirms the correctness of

transition from Eqs. (46) and (47) to the governing Eq.

(49).

To approximate relaxation curves at other strains, em; for

specimens annealed at T ¼ 110 8C, as well as for samples

annealed at other temperatures, T, and for specimens not

subjected to thermal treatment, we fix the constants V and S

and fit every relaxation curve by using two adjustable

parameters, C0 and C1; which are determined by the least-

squares technique. Figs. 4–10 demonstrate excellent

agreement between the experimental data and the results

of numerical simulation.

For any elongation ratio, l; the fraction of active MRs,

kaðlÞ; is found from Eq. (50)

kaðlÞ ¼ 2
C1ðlÞ

C0ðlÞ
:

This quantity is plotted versus the first principal invariant,

J1; of the right Cauchy–Green tensor for transition from the

initial state to the deformed state in Figs. 11–14. According

to Eq. (42), the parameter J1 is given by

J1 ¼ l2 þ 2l21:

The experimental data are approximated by the

Fig. 10. The engineering stress se (MPa) versus time t (s) in tensile

relaxation tests on specimens annealed at T ¼ 130 8C. Circles: experimen-

tal data. Solid lines: results of numerical simulation. Curve 1: e ¼ 0:18;

curve 2: e ¼ 0:20; curve 3: e ¼ 0:24; curve 4: e ¼ 0:28; curve 5: e ¼ 0:32:
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phenomenological equation

ka ¼ k0 þ k1ðJ1 2 3Þ; ð52Þ

where the coefficients k0 and k1 are found by the least-

squares method. According to the statistical theory of rubber

elasticity, the quantity J1 2 3 is proportional to the strain

energy of a rubbery polymer. Eq. (52) implies that the

content of active meso-regions linearly increases with the

mechanical energy of amorphous regions modeled as

networks of flexible chains.

Fig. 11 shows that Eq. (52) correctly describes the

experimental data for non-annealed specimens. Figs.

12–14 reveal that the observations for annealed samples

obey Eq. (52) with different coefficients k0 and k1 in

the sub-critical and post-critical regions. These coeffi-

cients, as well as the strain, ecr; corresponding to

transition from the sub-critical region (small elongations) to

the post-critical region (large elongations) are listed in

Table 1.

Our aim now is to compare the changes in the coefficients

k0 and k1 driven by an increase in the annealing temperature

Fig. 14. The concentration of active MRs ka versus the first principle

invariant J1 of the Cauchy–Green tensor for specimens annealed at

T ¼ 130 8C. Circles: treatment of observations. Solid lines: approximation

of the experimental data by Eq. (52). Curve 1: k0 ¼ 0:486; k1 ¼ 3:059;

curve 2: k0 ¼ 0:639; k1 ¼ 0:227:

Fig. 11. The concentration of active MRs ka versus the first principal

invariant J1 of the Cauchy–Green tensor for non-annealed specimens.

Circles: treatment of observations. Solid lines: approximation of the

experimental data by Eq. (52) with k0 ¼ 0:627; k1 ¼ 0:130:

Fig. 12. The concentration of active MRs ka versus the first principal

invariant J1 of the Cauchy–Green tensor for specimens annealed at

T ¼ 110 8C. Circles: treatment of observations. Solid lines: approximation

of the experimental data by Eq. (52). Curve 1: k0 ¼ 0:548; k1 ¼ 1:191;

curve 2: k0 ¼ 0:654; k1 ¼ 0:074:

Fig. 13. The concentration of active MRs ka versus the first principle

invariant J1 of the Cauchy–Green tensor for specimens annealed at

T ¼ 120 8C. Circles: treatment of observations. Solid lines: approximation

of the experimental data by Eq. (52). Curve 1: k0 ¼ 0:505; k1 ¼ 2:029;

curve 2: k0 ¼ 0:635; k1 ¼ 0:221:

A.D. Drozdov, J. deClaville Christiansen / Polymer 43 (2002) 4745–4761 4757



T with the changes in the shape of melting curves presented

in Fig. 1.

8. Discussion

Fig. 1 demonstrates that annealing of iPP results in the

development of the second broad endotherm on the low-

temperature side of the main peak of melting curves.

Despite substantial interest to the kinetics of growth of the

low-temperature shoulder on DSC traces of semicrystalline

polymers [3,4,7,8,11], this phenomenon remains the subject

of debate.

Several mechanisms have been proposed for the

secondary crystallization of isotactic polypropylene at

annealing:

1. Broadening of the distribution of crystalline lamellae

with various strengths (stabilities) [7].

2. Melting–recrystallization of subsidiary (thin) lamellae.

3. The presence of two populations of lamellae with

different growth rates (whose melting is attributed to

low and high peaks on melting curves) [1].

4. Transformation of folded chain crystals into extended

chain crystals [2].

5. Formation of b crystallites at annealing in the tempera-

ture range between 110 and 130 8C [11].

With reference to Verma et al. [1] and Hikosaka et al. [2],

we focus on the following changes in the morphology of

semicrystalline polymers driven by annealing at an elevated

temperature:

1. Secondary crystallization of part of the amorphous phase

in liquid pockets between stacks of primary lamellae and

formation of individual subsidiary (thin) lamellae and

their stacks.

2. Growth of primary (thick) lamellae with tapered shapes,

which is governed by two mechanisms: (i) lateral growth

by merging new folded chains to a crystal at its

periphery, and (ii) ‘thickening growth’ by transformation

of folded chains into extended chains in the central zone

of a lamella.

At relatively low temperatures, in the interval between

100 and 150 8C, melting of primary lamellae may be

disregarded. This implies that the DSC traces depicted in

Fig. 1 are not affected (or, at least, are weakly affected) by

thickening of primary lamellae. The differences between the

melting curves for samples not subjected to thermal

treatment and for specimens annealed at different tempera-

tures are attributed to the development of subsidiary

lamellae.

Formation of thin lamellae between stacks of primary

lamellae is characterized by the nucleation rate and the rate

of lateral growth. As a first approximation, we suppose that

far below the melting point the nucleation and growth

processes for subsidiary lamellae are thermally activated,

which implies that at the highest temperature of annealing,

T ¼ 130 8C, the number of secondary lamellae and their

average size are substantially larger than those at the lowest

temperature, T ¼ 110 8C. As the intensity of melting for

subsidiary lamellae is inversely proportional to their length,

secondary lamellae crystallized at T ¼ 110 8C start to melt

earlier than those crystallized at T ¼ 130 8C. This is

confirmed by DSC traces plotted in Fig. 1, which

demonstrate that the low-temperature endotherm for speci-

mens annealed at 110 8C exceeds that for specimens

annealed at T ¼ 130 8C in the interval of temperatures

between 110 and 135 8C. With the growth of temperature in

a DSC scan, the number of unmelted subsidiary lamellae

developed at 110 8C dramatically decreases, which implies

that the melting curve for specimens annealed at this

temperature approaches the melting curve for specimens not

subjected to thermal treatment when temperature reaches

140 8C. On the contrary, the low-temperature shoulder on

the melting curve for samples annealed at 130 8C remains

noticeably higher than that for non-annealed specimens.

The observed changes in melting curves of samples

annealed at various temperatures, T, are compared now with

changes in the kaðlÞ-curves in the sub-critical region

reported in Figs. 11–14. Formation of secondary lamellae

and their stacks imposes extra restrictions on rearrangement

of chains in amorphous meso-regions, which implies that

the concentration of active meso-domains in a stress-free

polymer should decrease at annealing. This conclusion is

confirmed by Table 1. The decrease in ka in stress-free

specimens is estimated as 11% (from 0.55 at T ¼ 110 8C to

0.49 at T ¼ 130 8C), which appears to be comparable with

changes in the DSC traces presented in Fig. 1. Under

stretching in the sub-critical region, thin lamellae are broken

one after another releasing the amorphous phase located in

between stacks of primary (thick) lamellae. In Figs. 11–14

this release is observed as a monotonic increase in the

concentration of active meso-regions with elongation ratio.

In accord with Aboulfaraj et al. [27] and Coulon et al. [25],

an individual thin lamella or a stack of subsidiary lamellae

may be thought of as a deformable ribbon (see Figure 15 in

Ref. [25]). Stretching a specimen causes elongation,

bending and twisting of this ribbon, which, finally, induce

its fracture. The ratio, l, of the average length of a ribbon to

Table 1

Adjustable parameters ecr; k0 and k1 for iPP annealed at various

temperatures T 8C

T ecr Sub-critical region Post-critical

region

k0 k1 k0 k1

110 0.20 0.55 1.19 0.65 0.07

120 0.16 0.50 2.03 0.64 0.22

130 0.14 0.49 3.06 0.64 0.23
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the characteristic size of its cross-section may be employed

for a rough estimate of the mechanically driven fracture of

secondary lamellae. The higher the dimensionless ratio l is,

the lower strain is necessary for breakage of thin lamellae.

As (i) the rate of lateral growth of subsidiary lamellae

noticeably exceeds the rate of their thickening growth, and

(ii) both these rates increase with temperature, it is natural to

expect that thin lamellae developed at the highest

temperature of annealing, T ¼ 130 8C, have the largest

value of l and break at smaller elongations of a specimen

than those formed at the lowest temperature, T ¼ 110 8C.

This hypothesis is fairly well confirmed by the data plotted

in Figs. 11–14. Table 1 reveals that the rate of fragmenta-

tion of secondary lamellae under straining (which is

characterized by the parameter k1; the rate of release of

amorphous phase with the growth of elongation ratio) for

samples annealed at 130 8C exceeds that for specimens

annealed at 110 8C by a factor of 3.

The upper boundary of the sub-critical region is

attributed to the strain, at which all thin lamellar stacks

are broken. This point is observed in Figs. 11–14 as a point

where the slope of the straight line (Eq. (52)) noticeably

decreases. According to Table 1, the critical strain, ecr;
strongly decreases with annealing temperature T (because

lamellae with larger ratio l are broken at smaller

elongations). For the specimens under investigation, the

critical strain is located in the interval between 0.14 and

0.20, i.e. between the apparent yield points defined as (i) the

points of maxima on the engineering stress–engineering

strain diagram (Fig. 2) and (ii) the points of transition to a

developed plastic flow (Fig. 3). Whether the critical strain,

ecr; may be identified as the ‘true’ yield point remains an

open question. To provide some answer to this question,

relaxation of stresses should be analyzed on specimens

annealed at higher temperatures (from T ¼ 140 to

T ¼ 160 8C), where annealing noticeably affects the

viscoplastic response of isotactic polypropylene. These

results will be reported in a subsequent study.

The concentration of active meso-regions at the

critical strain, ecr; is practically independent of the

annealing temperature (it equals 0.62 for samples not

subjected to thermal treatment and varies from 0.64 to

0.65 for annealed specimens). This indicates that the

growth of primary lamellae at annealing does not

impose extra constrains on rearrangement of chains in

the amorphous phase. A very weak increase in ka for

annealed specimens compared to its value for non-

annealed samples may be attributed to melting of tangential

lamellae in iPP and their recrystallization into radial

lamellae at annealing.

According to Table 1, the rate of breakage of primary

lamellae at straining of specimens in the post-critical region

(which is characterized by the coefficient k1) noticeably

grows with annealing temperature (it increases from 0.07 at

T ¼ 110 8C to 0.23 at T ¼ 130 8C). This growth is ascribed

by an increase in the dimensionless ratio l at annealing at

elevated temperatures, as well as by uncoiling of chains

(transformation of folded chains into extended chains) in the

central zones of lamellae. The latter implies a substantial

reduction in the bending and twisting rigidity of lamellae,

which enhances their breakage.

Fig. 3 demonstrates that necking of annealed specimens

occurs at the elongation ratio l < 1:34: It follows from Eq.

(52) and Table 1 that the concentration of active meso-

regions at the necking point insignificantly varies (from 0.68

to 0.70) for specimens annealed at different temperatures.

Necking of specimens not subjected to thermal treatment

occurs when the content of active meso-domains equals

0.64. This difference is quite comparable with the difference

between the concentrations of active meso-domains at the

critical strain (0.62 versus 0.64–0.65) and may be attributed

to melting–recrystallization of tangential lamellae at

annealing. On the basis of these observations, a hypothesis

is suggested that necking of iPP specimens at stretching

occurs when ‘weak’ lamellae (both primary and secondary)

are broken. Further fragmentation of ‘strong’ lamellae by

the coarse slip mechanism becomes energetically unfavor-

able (because it results in a negligible release of rigid

amorphous fraction), which implies that the minimum of

free energy is reached when a specimen becomes subjected

to spatially inhomogeneous deformation in the necking

region.

9. Concluding remarks

A model has been developed for the viscoelastic and

viscoplastic responses of semicrystalline polymers at

isothermal loading with finite strains. To derive constitutive

equations, a complicated microstructure of a polymer is

replaced by an equivalent transient network of macro-

molecules bridged by junctions (physical cross-links,

entanglements and crystalline lamellae). The network is

thought of as an ensemble of meso-regions with various

potential energies for separation of strands from temporary

nodes.

The viscoelastic response of a semicrystalline polymer is

attributed to (i) separation of active strands from temporary

junctions in active meso-domains and (ii) merging of

dangling strands with the network. Rearrangement of

strands is treated as a thermally activated process, whose

rate is determined by the Eyring equation.

The viscoplastic behavior is ascribed to sliding of

junctions with respect to their positions in the bulk material.

Stress–strain relations and a kinetic equation for the rate of

sliding have been developed by using the laws of

thermodynamics. Unlike conventional models in viscoplas-

ticity, it is demonstrated that in the general case the rate-of-

strain tensor for plastic flow is not proportional to the

deviatoric component of the Cauchy stress tensor. These

tensors remain proportional for deformations without
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rotations, when the left and right Cauchy–Green tensors

coincide.

Governing equations are simplified for uniaxial tension

of a bar. Adjustable parameters are found by fitting

experimental data in relaxation tests at strains below the

necking point.

Four series of tensile relaxation tests have been

performed on isotactic polypropylene at ambient tempera-

ture. In the first series, injection-molded samples were used

without thermal pre-treatment. In the other series, the

samples were annealed for 24 h at 110, 120 and 130 8C,

respectively, and slowly cooled by air. The results of

mechanical experiments were compared with DSC melting

curves.

The following conclusions have been drawn:

1. Fair agreement is demonstrated between the experimen-

tal data in relaxation tests and the results of numerical

simulation under the assumption that the relaxation

spectrum of iPP (which is characterized by the

distribution function, pðvÞ; for potential energies of

detachment of active strands from temporary junctions)

is not affected by thermo-mechanical factors.

2. The relaxation strength (which is characterized by the

content of active meso-regions ka) increases with strain.

Changes in the concentration of active meso-domains are

attributed to mechanically induced fragmentation of

lamellae. An increase in ka at stretching is proportional

to the first principal invariant of the Cauchy–Green

tensor.

3. Two regions of strains are revealed by matching

relaxation curves. In the sub-critical region, the rate of

growth in ka is relatively large. An increase in the content

of active amorphous domains is ascribed to frag-

mentation of subsidiary (thin) lamellae developed at

annealing. This is confirmed by changes in the DSC

traces observed in calorimetric tests. In the post-

critical region, the concentration of active MRs

increases rather weakly. This growth reflects release

of constrained amorphous phase driven by breakage of

primary (thick) lamellae.

4. The critical strain, ecr; that separates these two regions,

decreases with annealing temperature. This is explained

by an increase in brittleness of secondary lamellae

developed at higher temperatures (the rate of their lateral

growth substantially exceeds the rate of thickening

growth, which implies that their bending and twisting

rigidities are reduced with an increase in the annealing

temperature).

5. For specimens annealed at various temperatures, the

critical strain is rather close to the yield strain, which

means that yielding of iPP may be attributed to transition

from breakage of secondary lamellae to fragmentation of

primary lamellae.

6. At the necking point, the concentration of active meso-

regions reaches approximately the same value for all

samples. This means that necking (transition from

homogeneous to heterogeneous deformation of a

specimen) may be associated with the elongation

level, at which further destruction of crystallites

becomes energetically unfavorable, because it results

in a negligibly small release of the constrained

amorphous phase.
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